Graph Mining
Informacje ogólne
Kod przedmiotu: | 23A1N1-S |
Kod Erasmus / ISCED: |
11.9
|
Nazwa przedmiotu: | Graph Mining |
Jednostka: | Szkoła Główna Handlowa w Warszawie |
Grupy: | |
Punkty ECTS i inne: |
3.00 (zmienne w czasie)
|
Język prowadzenia: | angielski |
Efekty uczenia się: |
Wiedza: Students will learn the key concepts of the network science. Students will learn the basic tools used in graph mining Students will acquire basic intuitions about where graph mining could be used in practice. Students will learn the base knowledge of graph theory. Umiejętności: Students will be able to build, verify, and evaluate graph-based models. Students will be able to collect, transform and use relational data in real-world applications. Students will be able to visualize and present the results of their work on relational data. Kompetencje społeczne: Ability of presenting and communicating acquired results to high-level managerial stuff Acquire the ability of continued learning of methods related to graph mining. |
Zajęcia w cyklu "Preferencje - Semestr letni 2024/25" (jeszcze nie rozpoczęty)
Okres: | 2025-02-15 - 2025-09-30 |
Przejdź do planu
PN WT ŚR CZ PT |
Typ zajęć: |
Zajęcia prowadzącego
|
|
Koordynatorzy: | (brak danych) | |
Prowadzący grup: | Bartosz Pankratz | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Ocena
Zajęcia prowadzącego - Ocena |
Zajęcia w cyklu "Semestr letni 2024/25" (jeszcze nie rozpoczęty)
Okres: | 2025-02-15 - 2025-09-30 |
Przejdź do planu
PN WT ŚR CZ PT |
Typ zajęć: |
Laboratorium, 14 godzin
|
|
Koordynatorzy: | (brak danych) | |
Prowadzący grup: | (brak danych) | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Ocena
Laboratorium - Ocena |
|
Skrócony opis: |
During this course, students will learn selected methods and practical algorithms for mining and analyzing graphs with applications in several domains. The selected topics include centrality measures, degree correlations, clustering and community detection, graph embeddings, and tools to handle relational data. During the lectures students will learn the theoretical foundations of the network science which will be later complemented with practical experiments in Python and Julia programming languages. The course requires finishing the Statistical Learning Methods as a prerequisite. |
|
Pełny opis: |
The goal of the course is to provide the basic knowledge of contemporary network science and present the necessary tools used in graph mining. During this course, basic definitions of graph theory will be covered, with emphasis on the random graph theory. Students will learn the basic models, measures, and algorithms used in network science. The theoretical foundations will be complemented with practical experiments, where students will learn where and how to implement such models, analyze and visualize their results by themselves. The course requires finishing the Statistical Learning Methods as a prerequisite. |
|
Literatura: |
Literatura podstawowa: Kamiński B., Prałat P. and Théberge F. (2022), Mining Complex Networks, first edition (https://www.torontomu.ca/mining-complex-networks/) Barabási A.-L. (2018), Network science. Cambridge University Press (http://networksciencebook.com/) Literatura uzupełniająca: Latora V., Nicosia V. and Russo G. (2017), Complex Networks - Principles, Methods and Applications. Cambridge University Press Newman M (2018), Complex Networks - Principles, Methods and Applications. Oxford University Press, 2nd ed. Menczer F., Fortunato S. and Davis C. A. (2020), A First Course in Network Science. Cambridge University Press Publikacje własne: Bogumił Kamiński, Bartosz Pankratz, Paweł Prałat, Francois Theberge, Modularity of the ABCD random graph model with community structure, W: Journal of Complex Networks,2022; Bogumił Kamiński, Tomasz Olczak, Bartosz Pankratz, Paweł Prałat , dr Francois Theberge, Properties and Performance of the ABCDe Random Graph Model with Community Structure, W: Big Data Research,2022; Przemysław Szufel, Bartosz Pankratz, Anna Szczurek, Bogumił Kamiński, Paweł Prałat , Vehicle Routing Simulation for Prediction of Commuter?s Behaviour, W: JOURNAL OF ADVANCED TRANSPORTATION,2022; Przemysław Szufel, Bogumił Kamiński, Bartosz Pankratz, Francois Theberge , dr Paweł Prałat , Valerie Poulin , Clustering via Hypergraph Modularity,W: red. Hocine Cherifi, José Fernando Mendes, Luis Mateus Rocha, Sabrina Gaito, Esteban Moro, Joana Gonçalves-Sá, Francisco Santos, Complex Networks 2019 : The 8th International Conference on Complex Networks & Their Applications : Book of Abstract ,2019 |
|
Uwagi: |
Kryteria oceniania: egzamin tradycyjny-pisemny: 0.00% egzamin testowy: 0.00% egzamin ustny: 50.00% kolokwium: 0.00% inne: 0.00% projekty: 50.00% studia przypadków: 0.00% prezentacje indywidualne lub grupowe: 0.00% |
Zajęcia w cyklu "Semestr zimowy 2024/25" (w trakcie)
Okres: | 2024-10-01 - 2025-02-14 |
Przejdź do planu
PN WT ŚR CZ PT |
Typ zajęć: |
Laboratorium, 14 godzin
|
|
Koordynatorzy: | (brak danych) | |
Prowadzący grup: | (brak danych) | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Ocena
Laboratorium - Ocena |
|
Skrócony opis: |
During this course, students will learn selected methods and practical algorithms for mining and analyzing graphs with applications in several domains. The selected topics include centrality measures, degree correlations, clustering and community detection, graph embeddings, and tools to handle relational data. During the lectures students will learn the theoretical foundations of the network science which will be later complemented with practical experiments in Python and Julia programming languages. The course requires finishing the Statistical Learning Methods as a prerequisite. |
|
Pełny opis: |
The goal of the course is to provide the basic knowledge of contemporary network science and present the necessary tools used in graph mining. During this course, basic definitions of graph theory will be covered, with emphasis on the random graph theory. Students will learn the basic models, measures, and algorithms used in network science. The theoretical foundations will be complemented with practical experiments, where students will learn where and how to implement such models, analyze and visualize their results by themselves. The course requires finishing the Statistical Learning Methods as a prerequisite. |
|
Literatura: |
Literatura podstawowa: Kamiński B., Prałat P. and Théberge F. (2022), Mining Complex Networks, first edition (https://www.torontomu.ca/mining-complex-networks/) Barabási A.-L. (2018), Network science. Cambridge University Press (http://networksciencebook.com/) Literatura uzupełniająca: Latora V., Nicosia V. and Russo G. (2017), Complex Networks - Principles, Methods and Applications. Cambridge University Press Newman M (2018), Complex Networks - Principles, Methods and Applications. Oxford University Press, 2nd ed. Menczer F., Fortunato S. and Davis C. A. (2020), A First Course in Network Science. Cambridge University Press Publikacje własne: Bogumił Kamiński, Bartosz Pankratz, Paweł Prałat, Francois Theberge, Modularity of the ABCD random graph model with community structure, W: Journal of Complex Networks,2022; Bogumił Kamiński, Tomasz Olczak, Bartosz Pankratz, Paweł Prałat , dr Francois Theberge, Properties and Performance of the ABCDe Random Graph Model with Community Structure, W: Big Data Research,2022; Przemysław Szufel, Bartosz Pankratz, Anna Szczurek, Bogumił Kamiński, Paweł Prałat , Vehicle Routing Simulation for Prediction of Commuter?s Behaviour, W: JOURNAL OF ADVANCED TRANSPORTATION,2022; Przemysław Szufel, Bogumił Kamiński, Bartosz Pankratz, Francois Theberge , dr Paweł Prałat , Valerie Poulin , Clustering via Hypergraph Modularity,W: red. Hocine Cherifi, José Fernando Mendes, Luis Mateus Rocha, Sabrina Gaito, Esteban Moro, Joana Gonçalves-Sá, Francisco Santos, Complex Networks 2019 : The 8th International Conference on Complex Networks & Their Applications : Book of Abstract ,2019 |
|
Uwagi: |
Kryteria oceniania: egzamin tradycyjny-pisemny: 0.00% egzamin testowy: 0.00% egzamin ustny: 50.00% kolokwium: 0.00% inne: 0.00% projekty: 50.00% studia przypadków: 0.00% prezentacje indywidualne lub grupowe: 0.00% |
Właścicielem praw autorskich jest Szkoła Główna Handlowa w Warszawie.