Spatial Econometrics
Informacje ogólne
Kod przedmiotu: | 230891-D |
Kod Erasmus / ISCED: |
14.3
|
Nazwa przedmiotu: | Spatial Econometrics |
Jednostka: | Szkoła Główna Handlowa w Warszawie |
Grupy: |
Elective courses for AAB - masters Elective courses for QEM - masters Przedmioty kierunkowe do wyboru SMMD-ADA Przedmioty kierunkowe do wyboru SMMD-MIS |
Punkty ECTS i inne: |
3.00 (zmienne w czasie)
|
Język prowadzenia: | angielski |
Efekty uczenia się: |
Wiedza: Students identify the situations in which spatial modelling techniques should be used. Students know the definition and construction methods of spatial weight matrices. Students are familiar with the basic specifications of spatial models (SAR, SEM, SLM, SARAR, Durbin model). Students understand the specific problems related to the estimation of spatial model parameters, above all endogeneity problem, and know the consistent estimation methods. Students know the main specifications of spatial panel models. Umiejętności: Students are able to organise and proces spatial data (e.g. impose an adequate data structure, use maps for visualisation, import into the software). Students are able to estimate the types of spatial models that they have learned. Students are able to interpret the parameters of spatial models correctly and use the notions of direct, indirect and total effects. Students are able to detect spatial autocorrelation in cross-section and panel models and look for the optimum specification. Kompetencje społeczne: Students are able to cooperate in groups of 4-5 when solving case studies in the class (appoint a leader, actively participate, share tasks, work under time limit). Students are able to formulate critical opinions and balance the arguments during discussions. Students are able to communicate clearly and formulate their statements precisely. |
Zajęcia w cyklu "Semestr letni 2024/25" (jeszcze nie rozpoczęty)
Okres: | 2025-02-15 - 2025-09-30 |
Przejdź do planu
PN WT ŚR CZ PT |
Typ zajęć: |
Wykład, 30 godzin
|
|
Koordynatorzy: | (brak danych) | |
Prowadzący grup: | (brak danych) | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Ocena
Wykład - Ocena |
|
Skrócony opis: |
The methods of spatial econometrics allow to take account of interactions between investigated units in the modeling, i.e. remove the assumption of observational independence. The underlying concepts of this functional subdiscipline of econometrics will be presented: spatial weight matrices, testing of spatial effects, model specifications and consistent estimation methods, as well as spatial multipliers and some special models. The classes in computer laboratory will Focus on visualisation in maps and working with the models in consideration in the {spdep}/{spatialreg}/{splm} packages in R. |
|
Pełny opis: |
- Students should become familiar with the basic notions of spatial econometrics (in cross-section approach): spatial weight matrix, tests of spatial effects, SAR, SEM, SLM, SARAR and Durbin models, spatial multipliers (direct, indirect, total). - Presentation of the main areas of development in the spatial econometrics, as well as basic definitions and procedures that will facilitate individual studies of specific topics by the students in the future (panel models, discrete choice models, models with spatial heteroskedasticity). - Mastering the skills of visualising spatial data with R and using maps and datasets available in European geostatistical portals. - Developing the capability of specifying and estimating spatial econometric models in R, including: importing maps and datasets in a correct format, merging tables, creating weight matrices, estimating a selected model and finding the optimum model specification. - Developing the skill of correct parameter interpretation in the spatial models. |
|
Literatura: |
Literatura podstawowa: Arbia, G. (2014), A Primer for Spatial Econometrics With Applications in R, Palgrave Macmillan, Houndmills/Nowy Jork. Literatura uzupełniająca: 1. Elhorst, J.P. (2014), Spatial Econometrics. From Cross-Sectional Data to Spatial Panels, Springer. 2. Kelejian, H., Piras, G. (2017), Spatial Econometrics, Elsevier. 3. LeSage, J., Pace, R.K. (2009), Introduction to Spatial Econometrics, Chapman and Hall/CRC, Boca Raton. 4. Yamagata, Y.,Seya, H. (2020), Spatial Analysis Using Big Data, Elsevier. |
|
Uwagi: |
Kryteria oceniania: egzamin tradycyjny-pisemny: 50.00% referaty/eseje: 50.00% |
Zajęcia w cyklu "Semestr zimowy 2024/25" (w trakcie)
Okres: | 2024-10-01 - 2025-02-14 |
Przejdź do planu
PN WT ŚR CZ PT |
Typ zajęć: |
Wykład, 30 godzin
|
|
Koordynatorzy: | (brak danych) | |
Prowadzący grup: | (brak danych) | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Ocena
Wykład - Ocena |
|
Skrócony opis: |
The methods of spatial econometrics allow to take account of interactions between investigated units in the modeling, i.e. remove the assumption of observational independence. The underlying concepts of this functional subdiscipline of econometrics will be presented: spatial weight matrices, testing of spatial effects, model specifications and consistent estimation methods, as well as spatial multipliers and some special models. The classes in computer laboratory will Focus on visualisation in maps and working with the models in consideration in the {spdep}/{spatialreg}/{splm} packages in R. |
|
Pełny opis: |
- Students should become familiar with the basic notions of spatial econometrics (in cross-section approach): spatial weight matrix, tests of spatial effects, SAR, SEM, SLM, SARAR and Durbin models, spatial multipliers (direct, indirect, total). - Presentation of the main areas of development in the spatial econometrics, as well as basic definitions and procedures that will facilitate individual studies of specific topics by the students in the future (panel models, discrete choice models, models with spatial heteroskedasticity). - Mastering the skills of visualising spatial data with R and using maps and datasets available in European geostatistical portals. - Developing the capability of specifying and estimating spatial econometric models in R, including: importing maps and datasets in a correct format, merging tables, creating weight matrices, estimating a selected model and finding the optimum model specification. - Developing the skill of correct parameter interpretation in the spatial models. |
|
Literatura: |
Literatura podstawowa: Arbia, G. (2014), A Primer for Spatial Econometrics With Applications in R, Palgrave Macmillan, Houndmills/Nowy Jork. Literatura uzupełniająca: 1. Elhorst, J.P. (2014), Spatial Econometrics. From Cross-Sectional Data to Spatial Panels, Springer. 2. Kelejian, H., Piras, G. (2017), Spatial Econometrics, Elsevier. 3. LeSage, J., Pace, R.K. (2009), Introduction to Spatial Econometrics, Chapman and Hall/CRC, Boca Raton. 4. Yamagata, Y.,Seya, H. (2020), Spatial Analysis Using Big Data, Elsevier. |
|
Uwagi: |
Kryteria oceniania: egzamin tradycyjny-pisemny: 50.00% referaty/eseje: 50.00% |
Zajęcia w cyklu "Semestr letni 2023/24" (zakończony)
Okres: | 2024-02-24 - 2024-09-30 |
Przejdź do planu
PN WT ŚR CZ PT |
Typ zajęć: |
Wykład, 30 godzin
|
|
Koordynatorzy: | (brak danych) | |
Prowadzący grup: | (brak danych) | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Ocena
Wykład - Ocena |
|
Skrócony opis: |
The methods of spatial econometrics allow to take account of interactions between investigated units in the modeling, i.e. remove the assumption of observational independence. The underlying concepts of this functional subdiscipline of econometrics will be presented: spatial weight matrices, testing of spatial effects, model specifications and consistent estimation methods, as well as spatial multipliers and some special models. The classes in computer laboratory will Focus on visualisation in maps and working with the models in consideration in the {spdep} package in R. |
|
Pełny opis: |
- Students should become familiar with the basic notions of spatial econometrics (in cross-section approach): spatial weight matrix, tests of spatial effects, SAR, SEM, SLM, SARAR and Durbin models, spatial multipliers (direct, indirect, total). - Presentation of the main areas of development in the spatial econometrics, as well as basic definitions and procedures that will facilitate individual studies of specific topics by the students in the future (panel models, discrete choice models, models with spatial heteroskedasticity). - Mastering the skills of visualising spatial data with R and using maps and datasets available in European geostatistical portals. - Developing the capability of specifying and estimating spatial econometric models in R, including: importing maps and datasets in a correct format, merging tables, creating weight matrices, estimating a selected model and finding the optimum model specification. - Developing the skill of correct parameter interpretation in the spatial models. |
|
Literatura: |
Literatura podstawowa: Arbia, G. (2014), A Primer for Spatial Econometrics With Applications in R, Palgrave Macmillan, Houndmills/Nowy Jork. Literatura uzupełniająca: 1. Elhorst, J.P. (2014), Spatial Econometrics. From Cross-Sectional Data to Spatial Panels, Springer. 2. Kelejian, H., Piras, G. (2017), Spatial Econometrics, Elsevier. 3. LeSage, J., Pace, R.K. (2009), Introduction to Spatial Econometrics, Chapman and Hall/CRC, Boca Raton. 4. Yamagata, Y.,Seya, H. (2020), Spatial Analysis Using Big Data, Elsevier. |
|
Uwagi: |
Kryteria oceniania: egzamin tradycyjny-pisemny: 50.00% referaty/eseje: 50.00% |
Zajęcia w cyklu "Semestr zimowy 2023/24" (zakończony)
Okres: | 2023-10-01 - 2024-02-23 |
Przejdź do planu
PN WT ŚR CZ PT |
Typ zajęć: |
Wykład, 30 godzin
|
|
Koordynatorzy: | (brak danych) | |
Prowadzący grup: | (brak danych) | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Ocena
Wykład - Ocena |
|
Skrócony opis: |
The methods of spatial econometrics allow to take account of interactions between investigated units in the modeling, i.e. remove the assumption of observational independence. The underlying concepts of this functional subdiscipline of econometrics will be presented: spatial weight matrices, testing of spatial effects, model specifications and consistent estimation methods, as well as spatial multipliers and some special models. The classes in computer laboratory will Focus on visualisation in maps and working with the models in consideration in the {spdep} package in R. |
|
Pełny opis: |
- Students should become familiar with the basic notions of spatial econometrics (in cross-section approach): spatial weight matrix, tests of spatial effects, SAR, SEM, SLM, SARAR and Durbin models, spatial multipliers (direct, indirect, total). - Presentation of the main areas of development in the spatial econometrics, as well as basic definitions and procedures that will facilitate individual studies of specific topics by the students in the future (panel models, discrete choice models, models with spatial heteroskedasticity). - Mastering the skills of visualising spatial data with R and using maps and datasets available in European geostatistical portals. - Developing the capability of specifying and estimating spatial econometric models in R, including: importing maps and datasets in a correct format, merging tables, creating weight matrices, estimating a selected model and finding the optimum model specification. - Developing the skill of correct parameter interpretation in the spatial models. |
|
Literatura: |
Literatura podstawowa: Arbia, G. (2014), A Primer for Spatial Econometrics With Applications in R, Palgrave Macmillan, Houndmills/Nowy Jork. Literatura uzupełniająca: 1. Elhorst, J.P. (2014), Spatial Econometrics. From Cross-Sectional Data to Spatial Panels, Springer. 2. Kelejian, H., Piras, G. (2017), Spatial Econometrics, Elsevier. 3. LeSage, J., Pace, R.K. (2009), Introduction to Spatial Econometrics, Chapman and Hall/CRC, Boca Raton. 4. Yamagata, Y.,Seya, H. (2020), Spatial Analysis Using Big Data, Elsevier. |
|
Uwagi: |
Kryteria oceniania: egzamin tradycyjny-pisemny: 50.00% referaty/eseje: 50.00% |
Właścicielem praw autorskich jest Szkoła Główna Handlowa w Warszawie.