Statistical Learning Methods
Informacje ogólne
Kod przedmiotu: | 223491-D |
Kod Erasmus / ISCED: |
11.0
|
Nazwa przedmiotu: | Statistical Learning Methods |
Jednostka: | Szkoła Główna Handlowa w Warszawie |
Grupy: |
Elective courses for QEM - masters Major courses for AAB - masters Przedmioty kierunkowe do wyboru SMMD-MIS Przedmioty obowiązkowe na programie SMMD-ADA |
Punkty ECTS i inne: |
6.00 (zmienne w czasie)
|
Język prowadzenia: | angielski |
Efekty uczenia się: |
Wiedza: Student should be able to: 1. Present the applications of statistical learning methods used to support business decision making process. 2. Develop and explain the model building process and its application to the real-world managerial decision making support. Student should be able to: 1. Explain the reasons and consequences of model underfitting and overfitting. 2. Discuss the pros and cons of various selection and shrinkage methods. Student should be able to: 1. Enumerate classifier and regression evaluation measurements and visualization techniques. 2. Explain pros and cons of classical predictive models, i.e.: logistic regression, ridge and LASSO regression, spline function, kernel estimators, classification and regression trees, artificial neural nets. Umiejętności: The student should know: 1. Be able to build, verify, evaluate predictive model and construct the prediction based on them. 2. Install and be able to work in Julia language. The student should know: Implement in Julia language the following procedures: data transformation, parameters estimation, prediction, decision making based on built models, results export. The student should know: Develop data collecting, model building and data making process in real-world applications. Kompetencje społeczne: Other competences: Be able to present and communicate acquired results to high-level managerial stuff Other competences: Acquire the ability of continued learning of methods related to data mining. |
Zajęcia w cyklu "Preferencje - Semestr letni 2024/25" (jeszcze nie rozpoczęty)
Okres: | 2025-02-15 - 2025-09-30 |
Przejdź do planu
PN WT ŚR CZ PT |
Typ zajęć: |
Zajęcia prowadzącego
|
|
Koordynatorzy: | (brak danych) | |
Prowadzący grup: | Bogumił Kamiński | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Ocena
Zajęcia prowadzącego - Ocena |
Zajęcia w cyklu "Semestr letni 2024/25" (jeszcze nie rozpoczęty)
Okres: | 2025-02-15 - 2025-09-30 |
Przejdź do planu
PN WYK
WT ŚR CZ LAB
LAB
LAB
PT |
Typ zajęć: |
Laboratorium, 15 godzin
Wykład, 30 godzin
|
|
Koordynatorzy: | (brak danych) | |
Prowadzący grup: | Bogumił Kamiński | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Ocena
Wykład - Ocena |
|
Skrócony opis: |
Getting to know statistical algorithms of predictive model building used in decision making support. Practical aspects of model building: data collection and transformation, parameter estimation, prediction and decision making support based on models implemented in a programming language. Model Evaluation measurements and visualization. |
|
Pełny opis: |
1. Present concepts of statistical learning methods and acquire the necessary understanding to be able to taking advantage of these model to support managerial decision making. 2. Get to know statistical algorithms used to induce predictive models and to learn how to implement these algorithms in a programming language. 3. Acquire skills required to build, interpret, verify and select robust predictive models. 4. Learn to identify business context, in which it is appropriate to make usage of data mining techniques. Be able to develop a process of data collecting and analyzing. |
|
Literatura: |
Literatura podstawowa: Gareth J., Witten D., Hastie T., Tibshirani R. (2021), An Introduction to Statistical Learning (https://www.statlearning.com/) Literatura uzupełniająca: Hastie T., Tibshirani R., Friedman J. (2017), The Elements of Statistical Learning (http://www-stat.stanford.edu/~tibs/ElemStatLearn/) |
|
Uwagi: |
Kryteria oceniania: kolokwium: 50.00% ocena z ćwiczeń: 50.00% |
Zajęcia w cyklu "Semestr zimowy 2024/25" (w trakcie)
Okres: | 2024-10-01 - 2025-02-14 |
Przejdź do planu
PN WT ŚR CZ PT |
Typ zajęć: |
Laboratorium, 15 godzin
Wykład, 30 godzin
|
|
Koordynatorzy: | (brak danych) | |
Prowadzący grup: | (brak danych) | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Ocena
Wykład - Ocena |
|
Skrócony opis: |
Getting to know statistical algorithms of predictive model building used in decision making support. Practical aspects of model building: data collection and transformation, parameter estimation, prediction and decision making support based on models implemented in a programming language. Model Evaluation measurements and visualization. |
|
Pełny opis: |
1. Present concepts of statistical learning methods and acquire the necessary understanding to be able to taking advantage of these model to support managerial decision making. 2. Get to know statistical algorithms used to induce predictive models and to learn how to implement these algorithms in a programming language. 3. Acquire skills required to build, interpret, verify and select robust predictive models. 4. Learn to identify business context, in which it is appropriate to make usage of data mining techniques. Be able to develop a process of data collecting and analyzing. |
|
Literatura: |
Literatura podstawowa: Gareth J., Witten D., Hastie T., Tibshirani R. (2021), An Introduction to Statistical Learning (https://www.statlearning.com/) Literatura uzupełniająca: Hastie T., Tibshirani R., Friedman J. (2017), The Elements of Statistical Learning (http://www-stat.stanford.edu/~tibs/ElemStatLearn/) |
|
Uwagi: |
Kryteria oceniania: kolokwium: 50.00% ocena z ćwiczeń: 50.00% |
Zajęcia w cyklu "Semestr letni 2023/24" (zakończony)
Okres: | 2024-02-24 - 2024-09-30 |
Przejdź do planu
PN WYK
WT ŚR CZ LAB
LAB
LAB
PT |
Typ zajęć: |
Laboratorium, 15 godzin
Wykład, 30 godzin
|
|
Koordynatorzy: | (brak danych) | |
Prowadzący grup: | Bogumił Kamiński, Łukasz Kraiński | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Ocena
Wykład - Ocena |
|
Skrócony opis: |
Getting to know statistical algorithms of predictive model building used in decision making support. Practical aspects of model building: data collection and transformation, parameter estimation, prediction and decision making support based on models implemented in Julia, Python and R language. Model Evaluation measurements and visualization. |
|
Pełny opis: |
1. Present concepts of statistical learning methods and acquire the necessary understanding to be able to taking advantage of these model to support managerial decision making. 2. Get to know statistical algorithms used to induce predictive models and to learn how to implement these algorithms in Julia, Python and R language. 3. Acquire skills required to build, interpret, verify and select robust predictive models. 4. Learn to identify business context, in which it is appropriate to make usage of data mining techniques. Be able to develop a process of data collecting and analyzing. |
|
Literatura: |
Literatura podstawowa: J. Gareth, D. Witten, T. Hastie, R. Tibshirani, An Introduction to Statistical Learning with Applications in R, 2013; B. Kamiński: The Julia Express, http://bogumilkaminski.pl/files/julia_express.pdf; B. Kamiński: Julia DataFrames Tutorial, https://github.com/bkamins/Julia-DataFrames-Tutorial Literatura uzupełniająca: T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, 2013. |
|
Uwagi: |
Kryteria oceniania: kolokwium: 50.00% ocena z ćwiczeń: 50.00% |
Zajęcia w cyklu "Semestr zimowy 2023/24" (zakończony)
Okres: | 2023-10-01 - 2024-02-23 |
Przejdź do planu
PN WT ŚR CZ PT |
Typ zajęć: |
Laboratorium, 15 godzin
Wykład, 30 godzin
|
|
Koordynatorzy: | (brak danych) | |
Prowadzący grup: | (brak danych) | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Ocena
Wykład - Ocena |
|
Skrócony opis: |
Getting to know statistical algorithms of predictive model building used in decision making support. Practical aspects of model building: data collection and transformation, parameter estimation, prediction and decision making support based on models implemented in Julia, Python and R language. Model Evaluation measurements and visualization. |
|
Pełny opis: |
1. Present concepts of statistical learning methods and acquire the necessary understanding to be able to taking advantage of these model to support managerial decision making. 2. Get to know statistical algorithms used to induce predictive models and to learn how to implement these algorithms in Julia, Python and R language. 3. Acquire skills required to build, interpret, verify and select robust predictive models. 4. Learn to identify business context, in which it is appropriate to make usage of data mining techniques. Be able to develop a process of data collecting and analyzing. |
|
Literatura: |
Literatura podstawowa: J. Gareth, D. Witten, T. Hastie, R. Tibshirani, An Introduction to Statistical Learning with Applications in R, 2013; B. Kamiński: The Julia Express, http://bogumilkaminski.pl/files/julia_express.pdf; B. Kamiński: Julia DataFrames Tutorial, https://github.com/bkamins/Julia-DataFrames-Tutorial Literatura uzupełniająca: T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, 2013. |
|
Uwagi: |
Kryteria oceniania: kolokwium: 50.00% ocena z ćwiczeń: 50.00% |
Właścicielem praw autorskich jest Szkoła Główna Handlowa w Warszawie.