Advanced Optimization Methods
Informacje ogólne
Kod przedmiotu: | 222801-D |
Kod Erasmus / ISCED: |
04.2
|
Nazwa przedmiotu: | Advanced Optimization Methods |
Jednostka: | Szkoła Główna Handlowa w Warszawie |
Grupy: |
Major courses for AAB - masters Przedmioty obowiązkowe na programie SMMD-ADA Przedmioty obowiązkowe na programie SMMD-MIS |
Punkty ECTS i inne: |
6.00 (zmienne w czasie)
|
Język prowadzenia: | angielski |
Efekty uczenia się: |
Wiedza: Students should be capable of distinguishing between local and global optimization techniques as well as understand reasons why global search is structurally more difficult than local search. Students should understand workings of major global search methods and be capable of analyzing global search techniques on basis of the way in which they explore the search space. Students should understand major features of respective optimization techniques and how they relate to their efficiency in the course of search space exploration. Students should understand drawbacks and shortcomings of major global search methods and be capable of explaining implications they exert on search quality. Students should understand how these drawbacks influence efficiency of respective methods for search space exploration. Umiejętności: Students should be able to formulate a generic version of a global search problem. Students should be able to select a proper optimization engine to a given optimization problem as well as to adjust workings of stochastic search methods to a particular problem instance. Students should be able to implement major global optimization engines, calibrate them and utilize them in real life applications. Students should be able of communicating results of global search optimization methods using both a popular language as well as a technical language. Kompetencje społeczne: Students should be able to describe real life business or technology related situations a global search problems. Students should be able to communicate with and advise high level decision makers on optimization, be able to communicate using technical language in the area of optimization. |
Zajęcia w cyklu "Preferencje - Semestr letni 2024/25" (jeszcze nie rozpoczęty)
Okres: | 2025-02-15 - 2025-09-30 |
Przejdź do planu
PN WT ŚR CZ PT |
Typ zajęć: |
Zajęcia prowadzącego
|
|
Koordynatorzy: | (brak danych) | |
Prowadzący grup: | Grzegorz Koloch | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Ocena
Zajęcia prowadzącego - Ocena |
Zajęcia w cyklu "Semestr letni 2024/25" (jeszcze nie rozpoczęty)
Okres: | 2025-02-15 - 2025-09-30 |
Przejdź do planu
PN WT ŚR WYK
CZ PT |
Typ zajęć: |
Wykład, 60 godzin
|
|
Koordynatorzy: | (brak danych) | |
Prowadzący grup: | Grzegorz Koloch | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Ocena
Wykład - Ocena |
|
Skrócony opis: |
Global search vs. local search. Hard optimization (unimodal vs. multimodal search, continuous vs. discrete optimization). Simulated annealing algorithm, Tabu search method, Genetic algorithm, Differential evolution, Nelder-Mead method, Particle swarm optimization, Ant colony optimization, Iterated Local Search, Variable Neighborhood Search, Penalty method, GRG method, Augmented Lagrangean method, Fundamentals of complexity theory. Implementation of selected methods in GNU R. |
|
Pełny opis: |
1. Students get acquainted with theoretical and practical principles of global (multimodal) stochastic optimization. 2. Students get acquainted with workings of state-of-the art metaheuristic/stochastic optimization methods. 3. Students get acquainted with workings of general purpose constrained optimization methods. 4. Students get acquainted with principles of complexity theory (in the context of global optimization). |
|
Literatura: |
Literatura podstawowa: Dreo, J., Petrowski, A., Metaheuristics for Hard Optimization: Methods and Case Studies. Springer 2006. Zak, S., Chong, E. K. P., An Introduction to Optimization. Wiley 2008. Literatura uzupełniająca: Additional papers will be provided during the classes. |
|
Uwagi: |
Kryteria oceniania: egzamin testowy: 75.00% prezentacje indywidualne lub grupowe: 25.00% |
Zajęcia w cyklu "Semestr zimowy 2024/25" (w trakcie)
Okres: | 2024-10-01 - 2025-02-14 |
Przejdź do planu
PN WT ŚR CZ PT |
Typ zajęć: |
Wykład, 60 godzin
|
|
Koordynatorzy: | (brak danych) | |
Prowadzący grup: | (brak danych) | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Ocena
Wykład - Ocena |
|
Skrócony opis: |
Global search vs. local search. Hard optimization (unimodal vs. multimodal search, continuous vs. discrete optimization). Simulated annealing algorithm, Tabu search method, Genetic algorithm, Differential evolution, Nelder-Mead method, Particle swarm optimization, Ant colony optimization, Iterated Local Search, Variable Neighborhood Search, Penalty method, GRG method, Augmented Lagrangean method, Fundamentals of complexity theory. Implementation of selected methods in GNU R. |
|
Pełny opis: |
1. Students get acquainted with theoretical and practical principles of global (multimodal) stochastic optimization. 2. Students get acquainted with workings of state-of-the art metaheuristic/stochastic optimization methods. 3. Students get acquainted with workings of general purpose constrained optimization methods. 4. Students get acquainted with principles of complexity theory (in the context of global optimization). |
|
Literatura: |
Literatura podstawowa: Dreo, J., Petrowski, A., Metaheuristics for Hard Optimization: Methods and Case Studies. Springer 2006. Zak, S., Chong, E. K. P., An Introduction to Optimization. Wiley 2008. Literatura uzupełniająca: Additional papers will be provided during the classes. |
|
Uwagi: |
Kryteria oceniania: egzamin testowy: 75.00% prezentacje indywidualne lub grupowe: 25.00% |
Zajęcia w cyklu "Semestr letni 2023/24" (zakończony)
Okres: | 2024-02-24 - 2024-09-30 |
Przejdź do planu
PN WT ŚR WYK
CZ PT |
Typ zajęć: |
Wykład, 60 godzin
|
|
Koordynatorzy: | (brak danych) | |
Prowadzący grup: | Grzegorz Koloch | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Ocena
Wykład - Ocena |
|
Skrócony opis: |
Global search vs. local search. Hard optimization (unimodal vs. multimodal search, continuous vs. discrete optimization). Simulated annealing algorithm, Tabu search method, Genetic algorithm, Differential evolution, Nelder-Mead method, Particle swarm optimization, Ant colony optimization, Iterated Local Search, Variable Neighborhood Search, Penalty method, GRG method, Augmented Lagrangean method, Fundamentals of complexity theory. Implementation of selected methods in GNU R. |
|
Pełny opis: |
1. Students get acquainted with theoretical and practical principles of global (multimodal) stochastic optimization. 2. Students get acquainted with workings of state-of-the art metaheuristic/stochastic optimization methods. 3. Students get acquainted with workings of general purpose constrained optimization methods. 4. Students get acquainted with principles of complexity theory (in the context of global optimization). |
|
Literatura: |
Literatura podstawowa: Dreo, J., Petrowski, A., Metaheuristics for Hard Optimization: Methods and Case Studies. Springer 2006. Zak, S., Chong, E. K. P., An Introduction to Optimization. Wiley 2008. Literatura uzupełniająca: Additional papers will be provided during the classes. |
|
Uwagi: |
Kryteria oceniania: egzamin testowy: 75.00% prezentacje indywidualne lub grupowe: 25.00% |
Zajęcia w cyklu "Semestr zimowy 2023/24" (zakończony)
Okres: | 2023-10-01 - 2024-02-23 |
Przejdź do planu
PN WT ŚR CZ PT |
Typ zajęć: |
Wykład, 60 godzin
|
|
Koordynatorzy: | (brak danych) | |
Prowadzący grup: | (brak danych) | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Ocena
Wykład - Ocena |
|
Skrócony opis: |
Global search vs. local search. Hard optimization (unimodal vs. multimodal search, continuous vs. discrete optimization). Simulated annealing algorithm, Tabu search method, Genetic algorithm, Differential evolution, Nelder-Mead method, Particle swarm optimization, Ant colony optimization, Iterated Local Search, Variable Neighborhood Search, Penalty method, GRG method, Augmented Lagrangean method, Fundamentals of complexity theory. Implementation of selected methods in GNU R. |
|
Pełny opis: |
1. Students get acquainted with theoretical and practical principles of global (multimodal) stochastic optimization. 2. Students get acquainted with workings of state-of-the art metaheuristic/stochastic optimization methods. 3. Students get acquainted with workings of general purpose constrained optimization methods. 4. Students get acquainted with principles of complexity theory (in the context of global optimization). |
|
Literatura: |
Literatura podstawowa: Dreo, J., Petrowski, A., Metaheuristics for Hard Optimization: Methods and Case Studies. Springer 2006. Zak, S., Chong, E. K. P., An Introduction to Optimization. Wiley 2008. Literatura uzupełniająca: Additional papers will be provided during the classes. |
|
Uwagi: |
Kryteria oceniania: egzamin testowy: 75.00% prezentacje indywidualne lub grupowe: 25.00% |
Właścicielem praw autorskich jest Szkoła Główna Handlowa w Warszawie.