Szkoła Główna Handlowa w Warszawie - Centralny System Uwierzytelniania
Strona główna

Credit Scoring - Business Process Automation

Informacje ogólne

Kod przedmiotu: 220311-D
Kod Erasmus / ISCED: 11.2 Kod klasyfikacyjny przedmiotu składa się z trzech do pięciu cyfr, przy czym trzy pierwsze oznaczają klasyfikację dziedziny wg. Listy kodów dziedzin obowiązującej w programie Socrates/Erasmus, czwarta (dotąd na ogół 0) – ewentualne uszczegółowienie informacji o dyscyplinie, piąta – stopień zaawansowania przedmiotu ustalony na podstawie roku studiów, dla którego przedmiot jest przeznaczony. / (0542) Statystyka Kod ISCED - Międzynarodowa Standardowa Klasyfikacja Kształcenia (International Standard Classification of Education) została opracowana przez UNESCO.
Nazwa przedmiotu: Credit Scoring - Business Process Automation
Jednostka: Szkoła Główna Handlowa w Warszawie
Grupy: Major courses for AAB - masters
Przedmioty obowiązkowe na programie SMMD-ADA
Punkty ECTS i inne: 3.00 (zmienne w czasie) Podstawowe informacje o zasadach przyporządkowania punktów ECTS:
  • roczny wymiar godzinowy nakładu pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się dla danego etapu studiów wynosi 1500-1800 h, co odpowiada 60 ECTS;
  • tygodniowy wymiar godzinowy nakładu pracy studenta wynosi 45 h;
  • 1 punkt ECTS odpowiada 25-30 godzinom pracy studenta potrzebnej do osiągnięcia zakładanych efektów uczenia się;
  • tygodniowy nakład pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się pozwala uzyskać 1,5 ECTS;
  • nakład pracy potrzebny do zaliczenia przedmiotu, któremu przypisano 3 ECTS, stanowi 10% semestralnego obciążenia studenta.

zobacz reguły punktacji
Język prowadzenia: angielski
Efekty uczenia się:

Wiedza:

Student should:

1. know in detail all steps of scorecard model building, starting from data preparation to final model structure and monitoring;

know programming tools and techniques in SAS and OpenSource providing automated analysis and implementation of any difficult algorithm;

2. have own set of useful SAS codes improved and corrected by himself for scorecard building;

3. Learn the acceptance process management of complex business model: acquisition and cross-sell.

Umiejętności:

Student should get an own experience and develop skills:

1. For automating and advance analysis running and creating, becoming a high level analyst coding his algorithms in short time; of every step in scorecard model building;

2. For a new potential software model building, to be able to make a correct specification, to understand the main expected functions; in SAS and OpenSource, becoming a high level specialist using multi-resolving macros and macro do-iterative statements;

3. In running and analysing by himself acceptance process simulations to touch problems connected with Reject Inference, e.g. statistical conclusions based on biased sample.

Kompetencje społeczne:

Present, providing arguments and his own opinions about complex business process

Work in team

Zajęcia w cyklu "Semestr letni 2024/25" (w trakcie)

Okres: 2025-02-15 - 2025-09-30
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Laboratorium, 30 godzin więcej informacji
Koordynatorzy: (brak danych)
Prowadzący grup: (brak danych)
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Ocena
Laboratorium - Ocena
Skrócony opis:

The combination of statistics (descriptive and logistic regression), AI/ML (Artificial Intelligence and Machine Learning: elements of decision trees, XGBoosting, random forests, deep learning and variable selection heuristics) with programming in SAS and OpenSource is presented. During the course, software in SAS and OpenSource for building predictive models and simulating the credit approval process is improved and modified. Each class is usually a presentation of a program and algorithm along with a business interpretation.

Pełny opis:

The primary goal of the course is to provide students with experience and skills in automating the process in which credit decisions are automatically made based on a predictive model. It is therefore about building the Data Driven Decision Making environment. Therefore, all the most important technical, analytical and business aspects of the entire process are presented here. After completing this course, it can be expected that the student will fully control the entire business process, from its business and financial assumptions (also calculating the financial result) and ending with the implementation of the model and verification of assumptions with the final effect. It presents the construction of a risk scorecard and PD (default probability) models, study of programs and entering into all the details of each of the construction elements. The goal, therefore, appears as a presentation of a method for self-development of tools in order to be able to fully understand and control each stage of building models and not be dependent on specific software. Another aim is also to present any business problems related to the credit approval/acceptance process and the complex process of acquisition and cross-selling. During the course, the student learns to analyze the acceptance simulation process and can experience the consequences of changes in the parameters of the process. Thanks to the special simulated data used during classes, the student can feel like the Director of the Credit Risk Department and manage a banking process in which he either brings profits to the bank or loses them. The final project is a type of strategy game where each project team tries to define the parameters of the acceptance process in such a way as to maximize profits and earn more than the initial model.

Literatura:

Literatura podstawowa:

Credit scoring in the context of interpretable machine learning. Theory and practice. Edited by D. Kaszyński, B. Kamiński, T. Szapiro. Oficyna Wydawnicza SGH, Warszawa 2020 (https://ssl-kolegia.sgh.waw.pl/pl/KAE/struktura/IE/struktura/ZWiAD/publikacje/Documents/Credit_scoring_in_the_context_of_interpretable_machine_learning.pdf).

K. Przanowski, Credit Scoring - Studia przypadków procesów biznesowych, 2015, SGH - in Polish

K. Przanowski, Credit Scoring w erze Big Data, OW SGH, 2014 - in Polish

N. Siddiqi, Credit risk scorecards: Developing and implementing intelligent credit scoring. Wiley and SAS Business Series, 2005;

L.C. Thomas, D.B. Edelman, J.N. Crook, Credit Scoring and Its Applications, Society for Industrial and Applied Mathematics, Philadelfia 2002;

Basel Committee on Banking Supervision, Working paper no. 14, 2005; Studies on the validation of internal rating systems, Bank for International Settlements.

Literatura uzupełniająca:

Papers from the conference CRC (Credit Research Center): http://www.business-school.ed.ac.uk/crc/conferences/

A. Matuszyk, Credit Scoring, SGH, Warszawa 2009; E. Frątczak, red., 2012, Zaawansowane metody analiz statystycznych, SGH,

SAS Online Doc, SAS Institute Inc., http://support.sas.com/onlinedoc/913/docMainpage.jsp

Uwagi:

Kryteria oceniania:

egzamin testowy: 50.00%

projekty: 50.00%

Zajęcia w cyklu "Semestr zimowy 2024/25" (zakończony)

Okres: 2024-10-01 - 2025-02-14
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Laboratorium, 30 godzin więcej informacji
Koordynatorzy: (brak danych)
Prowadzący grup: Karol Przanowski
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Ocena
Laboratorium - Ocena
Skrócony opis:

The combination of statistics (descriptive and logistic regression), AI/ML (Artificial Intelligence and Machine Learning: elements of decision trees, XGBoosting, random forests, deep learning and variable selection heuristics) with programming in SAS and OpenSource is presented. During the course, software in SAS and OpenSource for building predictive models and simulating the credit approval process is improved and modified. Each class is usually a presentation of a program and algorithm along with a business interpretation.

Pełny opis:

The primary goal of the course is to provide students with experience and skills in automating the process in which credit decisions are automatically made based on a predictive model. It is therefore about building the Data Driven Decision Making environment. Therefore, all the most important technical, analytical and business aspects of the entire process are presented here. After completing this course, it can be expected that the student will fully control the entire business process, from its business and financial assumptions (also calculating the financial result) and ending with the implementation of the model and verification of assumptions with the final effect. It presents the construction of a risk scorecard and PD (default probability) models, study of programs and entering into all the details of each of the construction elements. The goal, therefore, appears as a presentation of a method for self-development of tools in order to be able to fully understand and control each stage of building models and not be dependent on specific software. Another aim is also to present any business problems related to the credit approval/acceptance process and the complex process of acquisition and cross-selling. During the course, the student learns to analyze the acceptance simulation process and can experience the consequences of changes in the parameters of the process. Thanks to the special simulated data used during classes, the student can feel like the Director of the Credit Risk Department and manage a banking process in which he either brings profits to the bank or loses them. The final project is a type of strategy game where each project team tries to define the parameters of the acceptance process in such a way as to maximize profits and earn more than the initial model.

Literatura:

Literatura podstawowa:

Credit scoring in the context of interpretable machine learning. Theory and practice. Edited by D. Kaszyński, B. Kamiński, T. Szapiro. Oficyna Wydawnicza SGH, Warszawa 2020 (https://ssl-kolegia.sgh.waw.pl/pl/KAE/struktura/IE/struktura/ZWiAD/publikacje/Documents/Credit_scoring_in_the_context_of_interpretable_machine_learning.pdf).

K. Przanowski, Credit Scoring - Studia przypadków procesów biznesowych, 2015, SGH - in Polish

K. Przanowski, Credit Scoring w erze Big Data, OW SGH, 2014 - in Polish

N. Siddiqi, Credit risk scorecards: Developing and implementing intelligent credit scoring. Wiley and SAS Business Series, 2005;

L.C. Thomas, D.B. Edelman, J.N. Crook, Credit Scoring and Its Applications, Society for Industrial and Applied Mathematics, Philadelfia 2002;

Basel Committee on Banking Supervision, Working paper no. 14, 2005; Studies on the validation of internal rating systems, Bank for International Settlements.

Literatura uzupełniająca:

Papers from the conference CRC (Credit Research Center): http://www.business-school.ed.ac.uk/crc/conferences/

A. Matuszyk, Credit Scoring, SGH, Warszawa 2009; E. Frątczak, red., 2012, Zaawansowane metody analiz statystycznych, SGH,

SAS Online Doc, SAS Institute Inc., http://support.sas.com/onlinedoc/913/docMainpage.jsp

Uwagi:

Kryteria oceniania:

egzamin testowy: 50.00%

projekty: 50.00%

Zajęcia w cyklu "Semestr letni 2023/24" (zakończony)

Okres: 2024-02-24 - 2024-09-30
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Laboratorium, 30 godzin więcej informacji
Koordynatorzy: (brak danych)
Prowadzący grup: Karol Przanowski
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Ocena
Laboratorium - Ocena
Skrócony opis:

The combination of statistics (descriptive and logistic regression), AI/ML (Artificial Intelligence and Machine Learning: elements of decision trees, XGBoosting, random forests, deep learning and variable selection heuristics) with programming in SAS and OpenSource is presented. During the course, software in SAS and OpenSource for building predictive models and simulating the credit approval process is improved and modified. Each class is usually a presentation of a program and algorithm along with a business interpretation.

Pełny opis:

The primary goal of the course is to provide students with experience and skills in automating the process in which credit decisions are automatically made based on a predictive model. It is therefore about building the Data Driven Decision Making environment. Therefore, all the most important technical, analytical and business aspects of the entire process are presented here. After completing this course, it can be expected that the student will fully control the entire business process, from its business and financial assumptions (also calculating the financial result) and ending with the implementation of the model and verification of assumptions with the final effect. It presents the construction of a risk scorecard and PD (default probability) models, study of programs and entering into all the details of each of the construction elements. The goal, therefore, appears as a presentation of a method for self-development of tools in order to be able to fully understand and control each stage of building models and not be dependent on specific software. Another aim is also to present any business problems related to the credit approval/acceptance process and the complex process of acquisition and cross-selling. During the course, the student learns to analyze the acceptance simulation process and can experience the consequences of changes in the parameters of the process. Thanks to the special simulated data used during classes, the student can feel like the Director of the Credit Risk Department and manage a banking process in which he either brings profits to the bank or loses them. The final project is a type of strategy game where each project team tries to define the parameters of the acceptance process in such a way as to maximize profits and earn more than the initial model.

Literatura:

Literatura podstawowa:

Credit scoring in the context of interpretable machine learning. Theory and practice. Edited by D. Kaszyński, B. Kamiński, T. Szapiro. Oficyna Wydawnicza SGH, Warszawa 2020 (https://ssl-kolegia.sgh.waw.pl/pl/KAE/struktura/IE/struktura/ZWiAD/publikacje/Documents/Credit_scoring_in_the_context_of_interpretable_machine_learning.pdf).

K. Przanowski, Credit Scoring - Studia przypadków procesów biznesowych, 2015, SGH - in Polish

K. Przanowski, Credit Scoring w erze Big Data, OW SGH, 2014 - in Polish

N. Siddiqi, Credit risk scorecards: Developing and implementing intelligent credit scoring. Wiley and SAS Business Series, 2005;

L.C. Thomas, D.B. Edelman, J.N. Crook, Credit Scoring and Its Applications, Society for Industrial and Applied Mathematics, Philadelfia 2002;

Basel Committee on Banking Supervision, Working paper no. 14, 2005; Studies on the validation of internal rating systems, Bank for International Settlements.

Literatura uzupełniająca:

Papers from the conference CRC (Credit Research Center): http://www.business-school.ed.ac.uk/crc/conferences/

A. Matuszyk, Credit Scoring, SGH, Warszawa 2009; E. Frątczak, red., 2012, Zaawansowane metody analiz statystycznych, SGH,

SAS Online Doc, SAS Institute Inc., http://support.sas.com/onlinedoc/913/docMainpage.jsp

Uwagi:

Kryteria oceniania:

egzamin testowy: 50.00%

projekty: 50.00%

Zajęcia w cyklu "Semestr zimowy 2023/24" (zakończony)

Okres: 2023-10-01 - 2024-02-23
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Laboratorium, 30 godzin więcej informacji
Koordynatorzy: (brak danych)
Prowadzący grup: Olga Momot, Karol Przanowski
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Ocena
Laboratorium - Ocena
Skrócony opis:

The combination of statistics (descriptive and logistic regression), AI/ML (Artificial Intelligence and Machine Learning: elements of decision trees, XGBoosting, random forests, deep learning and variable selection heuristics) with programming in SAS and OpenSource is presented. During the course, software in SAS and OpenSource for building predictive models and simulating the credit approval process is improved and modified. Each class is usually a presentation of a program and algorithm along with a business interpretation.

Pełny opis:

The primary goal of the course is to provide students with experience and skills in automating the process in which credit decisions are automatically made based on a predictive model. It is therefore about building the Data Driven Decision Making environment. Therefore, all the most important technical, analytical and business aspects of the entire process are presented here. After completing this course, it can be expected that the student will fully control the entire business process, from its business and financial assumptions (also calculating the financial result) and ending with the implementation of the model and verification of assumptions with the final effect. It presents the construction of a risk scorecard and PD (default probability) models, study of programs and entering into all the details of each of the construction elements. The goal, therefore, appears as a presentation of a method for self-development of tools in order to be able to fully understand and control each stage of building models and not be dependent on specific software. Another aim is also to present any business problems related to the credit approval/acceptance process and the complex process of acquisition and cross-selling. During the course, the student learns to analyze the acceptance simulation process and can experience the consequences of changes in the parameters of the process. Thanks to the special simulated data used during classes, the student can feel like the Director of the Credit Risk Department and manage a banking process in which he either brings profits to the bank or loses them. The final project is a type of strategy game where each project team tries to define the parameters of the acceptance process in such a way as to maximize profits and earn more than the initial model.

Literatura:

Literatura podstawowa:

Credit scoring in the context of interpretable machine learning. Theory and practice. Edited by D. Kaszyński, B. Kamiński, T. Szapiro. Oficyna Wydawnicza SGH, Warszawa 2020 (https://ssl-kolegia.sgh.waw.pl/pl/KAE/struktura/IE/struktura/ZWiAD/publikacje/Documents/Credit_scoring_in_the_context_of_interpretable_machine_learning.pdf).

K. Przanowski, Credit Scoring - Studia przypadków procesów biznesowych, 2015, SGH - in Polish

K. Przanowski, Credit Scoring w erze Big Data, OW SGH, 2014 - in Polish

N. Siddiqi, Credit risk scorecards: Developing and implementing intelligent credit scoring. Wiley and SAS Business Series, 2005;

L.C. Thomas, D.B. Edelman, J.N. Crook, Credit Scoring and Its Applications, Society for Industrial and Applied Mathematics, Philadelfia 2002;

Basel Committee on Banking Supervision, Working paper no. 14, 2005; Studies on the validation of internal rating systems, Bank for International Settlements.

Literatura uzupełniająca:

Papers from the conference CRC (Credit Research Center): http://www.business-school.ed.ac.uk/crc/conferences/

A. Matuszyk, Credit Scoring, SGH, Warszawa 2009; E. Frątczak, red., 2012, Zaawansowane metody analiz statystycznych, SGH,

SAS Online Doc, SAS Institute Inc., http://support.sas.com/onlinedoc/913/docMainpage.jsp

Uwagi:

Kryteria oceniania:

egzamin testowy: 50.00%

projekty: 50.00%

Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Szkoła Główna Handlowa w Warszawie.
al. Niepodległości 162
02-554 Warszawa
tel: +48 22 564 60 00 http://www.sgh.waw.pl/
kontakt deklaracja dostępności mapa serwisu USOSweb 7.1.1.0