Szkoła Główna Handlowa w Warszawie - Centralny System Uwierzytelniania
Strona główna

Econometrics in Finance

Informacje ogólne

Kod przedmiotu: 136391-D
Kod Erasmus / ISCED: 14.3 Kod klasyfikacyjny przedmiotu składa się z trzech do pięciu cyfr, przy czym trzy pierwsze oznaczają klasyfikację dziedziny wg. Listy kodów dziedzin obowiązującej w programie Socrates/Erasmus, czwarta (dotąd na ogół 0) – ewentualne uszczegółowienie informacji o dyscyplinie, piąta – stopień zaawansowania przedmiotu ustalony na podstawie roku studiów, dla którego przedmiot jest przeznaczony. / (0311) Ekonomia Kod ISCED - Międzynarodowa Standardowa Klasyfikacja Kształcenia (International Standard Classification of Education) została opracowana przez UNESCO.
Nazwa przedmiotu: Econometrics in Finance
Jednostka: Szkoła Główna Handlowa w Warszawie
Grupy: Elective courses for QME - bachelors
Przedmioty kierunkowe do wyboru SLLD-MIS
Punkty ECTS i inne: 6.00 (zmienne w czasie) Podstawowe informacje o zasadach przyporządkowania punktów ECTS:
  • roczny wymiar godzinowy nakładu pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się dla danego etapu studiów wynosi 1500-1800 h, co odpowiada 60 ECTS;
  • tygodniowy wymiar godzinowy nakładu pracy studenta wynosi 45 h;
  • 1 punkt ECTS odpowiada 25-30 godzinom pracy studenta potrzebnej do osiągnięcia zakładanych efektów uczenia się;
  • tygodniowy nakład pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się pozwala uzyskać 1,5 ECTS;
  • nakład pracy potrzebny do zaliczenia przedmiotu, któremu przypisano 3 ECTS, stanowi 10% semestralnego obciążenia studenta.

zobacz reguły punktacji
Język prowadzenia: angielski
Efekty uczenia się:

Wiedza:

1. Student knows main statistical properties of financial variables measured at different frequencies.

2. Student knows statistical tests of volatility clustering, as well as GARCH and realized volatility models.

3. Student knows the main market microstructure effects and knows the main types of econometric models for high-frequency data.

4. Student knows the methods for the event study and the main statistical tests of market efficiency in its weak, semi-strong and strong form. Student knows the CAPM models.

Umiejętności:

1. Student can interpret statistical properties of financial variables and prepare programming procedures for estimation and verification of main model types in Matlab.

2. Student can interpret the estimation results of conditional variance models, assess their goodness of fit and use the volatility forecasts to evaluate market risk.

3. Student can perform an event study. He/she can test the efficiency of the financial market in its weak, semi-strong and strong form. Student can estimate and validate the CAPM and APT models.

4. Student can construct and interpret transition matrices, estimate logit and probit models using the data on credit exposures.

Kompetencje społeczne:

1. Student knows the meaning of financial data properties for the models of market risk credit risk and portfolio allocation.

2. Student can prepare and explain programming procedures in Matlab.

3. Student understands the importance of quantitative methods for the inference about different phenomena that take place in financial markets.

4. Student can motivate her/his viewpoint on market functioning using her/his own empirical research results.

Zajęcia w cyklu "Semestr letni 2024/25" (w trakcie)

Okres: 2025-02-15 - 2025-09-30
24

Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Laboratorium, 60 godzin więcej informacji
Koordynatorzy: (brak danych)
Prowadzący grup: Katarzyna Bień-Barkowska
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Ocena
Laboratorium - Ocena
Grupy łączone SLLD+NLLP:

D+P

Skrócony opis:

Statistical properties of financial variables measured at different frequencies. Estimation, verification and interpretation of linear and non-linear models for financial returns. Discussion on econometric measures of market risk. Introduction to econometric models of market microstructure. Capital asset pricing models from the econometric viewpoint. Verification of market efficiency on empirical data.

Pełny opis:

The main aim of this subject is to acquaint students of the "Quantitative Methods in Economics and Information Systems" with the major econometric tools for modeling financial markets, with a special emphasizes on the econometric models of financial returns and market risk. Additional aim of the subject is to acquaint students with the econometric programming using real-world examples from financial markets and institutions.

Literatura:

Literatura podstawowa:

1. E. Elton, M. Gruber, S. Brown, W. Goetzmann, 2007, Modern Portfolio Theory and Investment Analysis, Wiley.

2. C. Osler, 2008, Market Risk Analysis, Volume II: Practical Financial Econometrics, John Wiley & Sons, Chichester (Chapters 3-4, 7-8).

Literatura uzupełniająca:

1. K. Bień-Barkowska, 2016, Mikrostruktura rynku. Ekonometryczne modelowanie dynamiki procesu transakcyjnego, Oficyna Wydawnicza SGH, Warszawa 2016.

2. R.F. Engle, 2002, Dynamic Conditional Correlation. A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models, Journal of Business & Economic Statistics 3, 339-350.

3. R.F. Engle, G.M. Gallo, 2006, A Multiple Indicators Model for Volatility Using Intra-Daily Data, Journal of Econometrics 131, 3-27.

4. R.F. Engle, S. Manganelli, 2004, CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles, Journal of Business & Economic Statistics 22(4), 367-381.

5. R.F. Engle, R. Russell, 1998, Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data, Econometrica, 66(5), 1127-1162.

6. C. Gourieroux, J. Jasiak, 2000, Financial Econometrics: Problems, Models, and Methods, Princeton University Press, Princeton.

7. A.W. Lo, A.C. MacKinlay, 1997, The Econometrics of Financial Markets, Princeton University Press, New Jersey.

8. O. Stażeński, 2011, Analiza rynków finansowych, C.H. Beck, Warszawa.

9. R.S. Tsay, 2010, Analysis of Financial Time Series, Wiley, New Jersey.

Uwagi:

Kryteria oceniania:

ocena z ćwiczeń: 100.00%

Zajęcia w cyklu "Semestr zimowy 2024/25" (zakończony)

Okres: 2024-10-01 - 2025-02-14
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Laboratorium, 60 godzin więcej informacji
Koordynatorzy: (brak danych)
Prowadzący grup: Katarzyna Bień-Barkowska, Dobromił Serwa
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Ocena
Laboratorium - Ocena
Skrócony opis:

Statistical properties of financial variables measured at different frequencies. Estimation, verification and interpretation of linear and non-linear models for financial returns. Discussion on econometric measures of market risk. Introduction to econometric models of market microstructure. Capital asset pricing models from the econometric viewpoint. Verification of market efficiency on empirical data.

Pełny opis:

The main aim of this subject is to acquaint students of the "Quantitative Methods in Economics and Information Systems" with the major econometric tools for modeling financial markets, with a special emphasizes on the econometric models of financial returns and market risk. Additional aim of the subject is to acquaint students with the econometric programming using real-world examples from financial markets and institutions.

Literatura:

Literatura podstawowa:

1. E. Elton, M. Gruber, S. Brown, W. Goetzmann, 2007, Modern Portfolio Theory and Investment Analysis, Wiley.

2. C. Osler, 2008, Market Risk Analysis, Volume II: Practical Financial Econometrics, John Wiley & Sons, Chichester (Chapters 3-4, 7-8).

Literatura uzupełniająca:

1. K. Bień-Barkowska, 2016, Mikrostruktura rynku. Ekonometryczne modelowanie dynamiki procesu transakcyjnego, Oficyna Wydawnicza SGH, Warszawa 2016.

2. R.F. Engle, 2002, Dynamic Conditional Correlation. A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models, Journal of Business & Economic Statistics 3, 339-350.

3. R.F. Engle, G.M. Gallo, 2006, A Multiple Indicators Model for Volatility Using Intra-Daily Data, Journal of Econometrics 131, 3-27.

4. R.F. Engle, S. Manganelli, 2004, CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles, Journal of Business & Economic Statistics 22(4), 367-381.

5. R.F. Engle, R. Russell, 1998, Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data, Econometrica, 66(5), 1127-1162.

6. C. Gourieroux, J. Jasiak, 2000, Financial Econometrics: Problems, Models, and Methods, Princeton University Press, Princeton.

7. A.W. Lo, A.C. MacKinlay, 1997, The Econometrics of Financial Markets, Princeton University Press, New Jersey.

8. O. Stażeński, 2011, Analiza rynków finansowych, C.H. Beck, Warszawa.

9. R.S. Tsay, 2010, Analysis of Financial Time Series, Wiley, New Jersey.

Uwagi:

Kryteria oceniania:

ocena z ćwiczeń: 100.00%

Zajęcia w cyklu "Semestr letni 2023/24" (zakończony)

Okres: 2024-02-24 - 2024-09-30
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Laboratorium, 60 godzin więcej informacji
Koordynatorzy: (brak danych)
Prowadzący grup: (brak danych)
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Ocena
Laboratorium - Ocena
Skrócony opis:

Statistical properties of financial variables measured at different frequencies. Estimation, verification and interpretation of linear and non-linear models for financial returns. Discussion on econometric measures of market risk. Introduction to econometric models of market microstructure. Capital asset pricing models from the econometric viewpoint. Verification of market efficiency on empirical data.

Pełny opis:

The main aim of this subject is to acquaint students of the "Quantitative Methods in Economics and Information Systems" with the major econometric tools for modeling financial markets, with a special emphasizes on the econometric models of financial returns and market risk. Additional aim of the subject is to acquaint students with the econometric programming using real-world examples from financial markets and institutions.

Literatura:

Literatura podstawowa:

1. E. Elton, M. Gruber, S. Brown, W. Goetzmann, 2007, Modern Portfolio Theory and Investment Analysis, Wiley.

2. C. Osler, 2008, Market Risk Analysis, Volume II: Practical Financial Econometrics, John Wiley & Sons, Chichester (Chapters 3-4, 7-8).

Literatura uzupełniająca:

1. K. Bień-Barkowska, 2016, Mikrostruktura rynku. Ekonometryczne modelowanie dynamiki procesu transakcyjnego, Oficyna Wydawnicza SGH, Warszawa 2016.

2. R.F. Engle, 2002, Dynamic Conditional Correlation. A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models, Journal of Business & Economic Statistics 3, 339-350.

3. R.F. Engle, G.M. Gallo, 2006, A Multiple Indicators Model for Volatility Using Intra-Daily Data, Journal of Econometrics 131, 3-27.

4. R.F. Engle, S. Manganelli, 2004, CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles, Journal of Business & Economic Statistics 22(4), 367-381.

5. R.F. Engle, R. Russell, 1998, Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data, Econometrica, 66(5), 1127-1162.

6. C. Gourieroux, J. Jasiak, 2000, Financial Econometrics: Problems, Models, and Methods, Princeton University Press, Princeton.

7. A.W. Lo, A.C. MacKinlay, 1997, The Econometrics of Financial Markets, Princeton University Press, New Jersey.

8. O. Stażeński, 2011, Analiza rynków finansowych, C.H. Beck, Warszawa.

9. R.S. Tsay, 2010, Analysis of Financial Time Series, Wiley, New Jersey.

Uwagi:

Kryteria oceniania:

ocena z ćwiczeń: 100.00%

Zajęcia w cyklu "Semestr zimowy 2023/24" (zakończony)

Okres: 2023-10-01 - 2024-02-23
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Laboratorium, 60 godzin więcej informacji
Koordynatorzy: (brak danych)
Prowadzący grup: Katarzyna Bień-Barkowska
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Ocena
Laboratorium - Ocena
Skrócony opis:

Statistical properties of financial variables measured at different frequencies. Estimation, verification and interpretation of linear and non-linear models for financial returns. Discussion on econometric measures of market risk. Introduction to econometric models of market microstructure. Capital asset pricing models from the econometric viewpoint. Verification of market efficiency on empirical data.

Pełny opis:

The main aim of this subject is to acquaint students of the "Quantitative Methods in Economics and Information Systems" with the major econometric tools for modeling financial markets, with a special emphasizes on the econometric models of financial returns and market risk. Additional aim of the subject is to acquaint students with the econometric programming using real-world examples from financial markets and institutions.

Literatura:

Literatura podstawowa:

1. E. Elton, M. Gruber, S. Brown, W. Goetzmann, 2007, Modern Portfolio Theory and Investment Analysis, Wiley.

2. C. Osler, 2008, Market Risk Analysis, Volume II: Practical Financial Econometrics, John Wiley & Sons, Chichester (Chapters 3-4, 7-8).

Literatura uzupełniająca:

1. K. Bień-Barkowska, 2016, Mikrostruktura rynku. Ekonometryczne modelowanie dynamiki procesu transakcyjnego, Oficyna Wydawnicza SGH, Warszawa 2016.

2. R.F. Engle, 2002, Dynamic Conditional Correlation. A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models, Journal of Business & Economic Statistics 3, 339-350.

3. R.F. Engle, G.M. Gallo, 2006, A Multiple Indicators Model for Volatility Using Intra-Daily Data, Journal of Econometrics 131, 3-27.

4. R.F. Engle, S. Manganelli, 2004, CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles, Journal of Business & Economic Statistics 22(4), 367-381.

5. R.F. Engle, R. Russell, 1998, Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data, Econometrica, 66(5), 1127-1162.

6. C. Gourieroux, J. Jasiak, 2000, Financial Econometrics: Problems, Models, and Methods, Princeton University Press, Princeton.

7. A.W. Lo, A.C. MacKinlay, 1997, The Econometrics of Financial Markets, Princeton University Press, New Jersey.

8. O. Stażeński, 2011, Analiza rynków finansowych, C.H. Beck, Warszawa.

9. R.S. Tsay, 2010, Analysis of Financial Time Series, Wiley, New Jersey.

Uwagi:

Kryteria oceniania:

ocena z ćwiczeń: 100.00%

Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Szkoła Główna Handlowa w Warszawie.
al. Niepodległości 162
02-554 Warszawa
tel: +48 22 564 60 00 http://www.sgh.waw.pl/
kontakt deklaracja dostępności mapa serwisu USOSweb 7.1.1.0