Szkoła Główna Handlowa w Warszawie - Centralny System UwierzytelnianiaNie jesteś zalogowany | zaloguj się
katalog przedmiotów - pomoc

Mathematical Analysis

Informacje ogólne

Kod przedmiotu: 121011-D Kod Erasmus / ISCED: 11.1 / (0541) Matematyka
Nazwa przedmiotu: Mathematical Analysis
Jednostka: Szkoła Główna Handlowa w Warszawie
Grupy: Courses for QME - bachelors
Major courses for QME - bachelors
Przedmioty obowiązkowe na programie SLLD-MIS
Punkty ECTS i inne: 6.00 (zmienne w czasie)
zobacz reguły punktacji
Język prowadzenia: angielski
Skrócony opis:

See semester study programme.

Pełny opis:

The complement of first semester course in mathematics. Introduction to differential and integral calculus of multi variable functions. Basic properties of mappings of finite dimensional spaces.

This course provides basic information on mathematical analysis used in economic modeling, probability theory and optimization techniques. The first part of the course is the extension of compulsory lecture on mathematics and it includes theory of infinite sequences, infinite series and differential and integral calculus of one variable functions.

Theory of multivariable functions and mappings is the second part of the course. The course ends with the elements of measure theory and Lebesgue integral.

Literatura:

Literatura podstawowa:

* James Stewart, Calculus: Early Transcendentals (6th international metric edition),

Brooks/Cole 2008, (selected sections)

* Dean Corbae, Maxwell B. Stinchcombe, Juraj Zeman, An Introduction to Mathema-

tical Analysis for Economic Theory and Econometrics, Priceton University Press,

2009, (selected sections)

Literatura uzupełniająca:

Eff?e A. Ok, Real Analysis with Economic Applications, Priceton University Press,

2009, (selected sections)

Efekty uczenia się:

Wiedza:

A student should know:

Methods for determining limits of real numbers sequences.

Definition and convergence criteria for infinite series.

L'Hospital's Rule and its applications.

Taylor's formula and its applications.

A student should know:

Topological properties of subsets of Euclidean spaces.

Properties of the mappings of Euclidean spaces.

A student should know:

Definition of the directional and partial derivatives of multi variable functions.

Definition of the first and second derivative of multi variable function.

Applications of multi variable calculus.

Definition of differentiablity of mappings.

Definitions of locally and globally invertible mappings.

Existence theorem for implicit functions.

Umiejętności:

A student should be able to:

Calculate the limits of real number sequences.

Examine the convergence of infinite series.

Examine the course of the variability in the function of one variable.

Find Taylor formula and Taylor series of a one variable function.

A student should be able to:

Examine the topological properties of subsets of Euclidean spaces.

Examine the continuity of mapping.

A student should be able to:

Determine the matrix of derivatives of mapping.

Investigate the existence of implicit mapping.

Compute the derivatives of inverse mapping.

Kompetencje społeczne:

Developing the practice of doing mathematics.

Developing precise and logical reasoning.

Developing ability to unaided mathematical reasoning (proofs).

Working with algebraic and analytic techniques in statistics, econometrics and decision making.

Ability to read professional papers in economics.

Ability to do professional economic and managerial analysis.

Ability to create mathematical models of complex economic processes.

Understanding the distinction between mathematical and economic contents of a model.

Providing basic knowledge to studying probability theory, optimization techniques and advanced economics.

Developing creative and critical thinking.

Metody i kryteria oceniania:

egzamin tradycyjny-pisemny: 50.00%

kolokwium: 40.00%

ocena z ćwiczeń: 10.00%

Zajęcia w cyklu "Semestr zimowy 2019/20" (zakończony)

Okres: 2019-10-01 - 2020-02-21
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Ćwiczenia, 30 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: (brak danych)
Prowadzący grup: Łukasz Pawelec
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Egzamin
Ćwiczenia - Zaliczenie
Wykład - Egzamin

Zajęcia w cyklu "Semestr letni 2019/20" (zakończony)

Okres: 2020-02-22 - 2020-09-30
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Ćwiczenia, 30 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: (brak danych)
Prowadzący grup: (brak danych)
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Egzamin
Ćwiczenia - Zaliczenie
Wykład - Egzamin

Zajęcia w cyklu "Semestr zimowy 2020/21" (zakończony)

Okres: 2020-10-01 - 2021-02-19
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Ćwiczenia, 30 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: (brak danych)
Prowadzący grup: (brak danych)
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Egzamin
Ćwiczenia - Zaliczenie
Wykład - Egzamin

Zajęcia w cyklu "Semestr letni 2020/21" (zakończony)

Okres: 2021-02-20 - 2021-09-30
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Ćwiczenia, 30 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: (brak danych)
Prowadzący grup: (brak danych)
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Egzamin
Ćwiczenia - Zaliczenie
Wykład - Egzamin

Zajęcia w cyklu "Semestr zimowy 2021/22" (zakończony)

Okres: 2021-10-01 - 2022-02-18
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Ćwiczenia, 30 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: (brak danych)
Prowadzący grup: Robert Dryło
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Egzamin
Ćwiczenia - Zaliczenie
Wykład - Egzamin

Zajęcia w cyklu "Semestr letni 2021/22" (w trakcie)

Okres: 2022-02-19 - 2022-09-30
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Ćwiczenia, 30 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: (brak danych)
Prowadzący grup: Łukasz Pawelec
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Egzamin
Ćwiczenia - Zaliczenie
Wykład - Egzamin
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Szkoła Główna Handlowa w Warszawie.