Data Mining
Informacje ogólne
Kod przedmiotu: | 223121-D |
Kod Erasmus / ISCED: |
11.0
|
Nazwa przedmiotu: | Data Mining |
Jednostka: | Szkoła Główna Handlowa w Warszawie |
Grupy: |
Elective courses for QEM - masters Major courses for AAB - masters Przedmioty kierunkowe do wyboru SMMD-MIS Przedmioty obowiązkowe na programie SMMD-ADA |
Punkty ECTS i inne: |
3.00 (zmienne w czasie)
|
Język prowadzenia: | angielski |
Efekty uczenia się: |
Wiedza: Student should: know and understand steps in data mining from structured and unstructured, Student should: understand methods and models of data mining and know the theory of basic of text mining, Student should: be able to select the proper methods and models in specific decision problem Student should: understand the idea of presented algorithms and interpretation of results. Umiejętności: Student should: solve the decision problem using the proper computer programme Student should: be able to prepare the data for data mining method, Student should: be able to estimate data mining models Student should: assess the qulaity of estimated models. Student should: understand advantages and disadvantages of applied methods. Kompetencje społeczne: Appreciate the meaning of data analysis in enterprises. Is able to assess the acquired knowledge in pratical use Understand the social consequences of wrong analysis. |
Zajęcia w cyklu "Semestr letni 2024/25" (jeszcze nie rozpoczęty)
Okres: | 2025-02-15 - 2025-09-30 |
Przejdź do planu
PN WT ŚR CZ PT |
Typ zajęć: |
Laboratorium, 30 godzin
|
|
Koordynatorzy: | (brak danych) | |
Prowadzący grup: | (brak danych) | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Ocena
Laboratorium - Ocena |
|
Skrócony opis: |
Classes are focused on teaching students advanced data mining and text mining techniques, including advanced methods of big data analysis. As a result of dynamic development of this interdisciplinary research a lot of effective algorithms were developed allowing automatically discovery of knowledge from databases, including unstructured data available in internet. This knowledge may be used in decision processes in business (including enterprises), science and technology. |
|
Pełny opis: |
The basic goal of these classes is to show students the theoretical and practical knowledge from advanced data mining techniques. During the classes theoretical basis of data mining techniques are presented as well as methods of verification of selected models. Also practical aspects of the applications of such methods in business are discussed. In laboratories students are able to realise the full process of data mining, starting with data preparation, variable selection, modelling, and ending with practical evaluation of results. In addition, unstructured data sets are analysed with text mining techniques. This subject is part of the Certificate: Data Scientist with SAS on master studies: Data Analysis - Big Data. |
|
Literatura: |
Literatura podstawowa: Géron Aurélien (2018), Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems Chollet, Allaire (2017), Deep Learning with Python, Manning Publications Zheng Alice (2018), Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists, O?Reilly D.T.Larose, Discovering Knowledge in Data: An Introduction to Data Mining, Wiley, New York 2005; D.T.Larose, Data Mining Methods and Models, Wiley, New York 2006; I.Goodfellow, Y.Bengio, A.Courville, (2016). Deep learning (Vol. 1, p. 2). Cambridge: MIT press; I.H.Witten, H.Ian, Data Mining: Practical Machine Learning Tools and Techniques, Second Edition, Morgan Kaufmann, New York 2005; R.Matignon, Data Mining Using SAS Enterprise Miner, Wiley, Hoboken, NJ, 2007; R. Feldman, J. Sanger, The text mining handbook, Cambridge; M. W. Berry, J. Kogan, Text Mining: Applications and Theory, Wiley; S.M. Weiss, N. Indurkhya, T. Zhang, F. Damerau, Text Mining: Predictive Methods for Analyzing Unstructured Information, Springer; S. Haykin, Neural Networks and Learning Machines, Pearson, New Jersey 2009; F. Provost, T. Fawcett, Data Science for Business: What you need to know about data mining and data-analytic thinking, O?Reilly, USA, 2013; P. Flach, Machine Learning: The Art and Science of Algorithms that Make Sense of Data, Cambridge University Press, Cambridge, 2012; N. Japkowicz, M. Shah, Evaluating Learning Algorithms: A Classification Perspective, Cambridge University Press, New York, USA, 2011. Literatura uzupełniająca: K.J.Cios, W.Pedrycz, R.W.Swiniarski, L.A.Kurgan, Data Mining: A Knowledge Discovery Approach, Springer Science, Business Media, New York, 2007; Z.Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Norwell, MA, 1992. |
|
Uwagi: |
Kryteria oceniania: egzamin testowy: 50.00% projekty: 50.00% |
Zajęcia w cyklu "Semestr zimowy 2024/25" (w trakcie)
Okres: | 2024-10-01 - 2025-02-14 |
Przejdź do planu
PN WT ŚR LAB
LAB
CZ PT |
Typ zajęć: |
Laboratorium, 30 godzin
|
|
Koordynatorzy: | (brak danych) | |
Prowadzący grup: | Aneta Ptak-Chmielewska | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Ocena
Laboratorium - Ocena |
|
Skrócony opis: |
Classes are focused on teaching students advanced data mining and text mining techniques, including advanced methods of big data analysis. As a result of dynamic development of this interdisciplinary research a lot of effective algorithms were developed allowing automatically discovery of knowledge from databases, including unstructured data available in internet. This knowledge may be used in decision processes in business (including enterprises), science and technology. |
|
Pełny opis: |
The basic goal of these classes is to show students the theoretical and practical knowledge from advanced data mining techniques. During the classes theoretical basis of data mining techniques are presented as well as methods of verification of selected models. Also practical aspects of the applications of such methods in business are discussed. In laboratories students are able to realise the full process of data mining, starting with data preparation, variable selection, modelling, and ending with practical evaluation of results. In addition, unstructured data sets are analysed with text mining techniques. This subject is part of the Certificate: Data Scientist with SAS on master studies: Data Analysis - Big Data. |
|
Literatura: |
Literatura podstawowa: Géron Aurélien (2018), Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems Chollet, Allaire (2017), Deep Learning with Python, Manning Publications Zheng Alice (2018), Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists, O?Reilly D.T.Larose, Discovering Knowledge in Data: An Introduction to Data Mining, Wiley, New York 2005; D.T.Larose, Data Mining Methods and Models, Wiley, New York 2006; I.Goodfellow, Y.Bengio, A.Courville, (2016). Deep learning (Vol. 1, p. 2). Cambridge: MIT press; I.H.Witten, H.Ian, Data Mining: Practical Machine Learning Tools and Techniques, Second Edition, Morgan Kaufmann, New York 2005; R.Matignon, Data Mining Using SAS Enterprise Miner, Wiley, Hoboken, NJ, 2007; R. Feldman, J. Sanger, The text mining handbook, Cambridge; M. W. Berry, J. Kogan, Text Mining: Applications and Theory, Wiley; S.M. Weiss, N. Indurkhya, T. Zhang, F. Damerau, Text Mining: Predictive Methods for Analyzing Unstructured Information, Springer; S. Haykin, Neural Networks and Learning Machines, Pearson, New Jersey 2009; F. Provost, T. Fawcett, Data Science for Business: What you need to know about data mining and data-analytic thinking, O?Reilly, USA, 2013; P. Flach, Machine Learning: The Art and Science of Algorithms that Make Sense of Data, Cambridge University Press, Cambridge, 2012; N. Japkowicz, M. Shah, Evaluating Learning Algorithms: A Classification Perspective, Cambridge University Press, New York, USA, 2011. Literatura uzupełniająca: K.J.Cios, W.Pedrycz, R.W.Swiniarski, L.A.Kurgan, Data Mining: A Knowledge Discovery Approach, Springer Science, Business Media, New York, 2007; Z.Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Norwell, MA, 1992. |
|
Uwagi: |
Kryteria oceniania: egzamin testowy: 50.00% projekty: 50.00% |
Zajęcia w cyklu "Semestr letni 2023/24" (zakończony)
Okres: | 2024-02-24 - 2024-09-30 |
Przejdź do planu
PN WT ŚR CZ PT |
Typ zajęć: |
Laboratorium, 30 godzin
|
|
Koordynatorzy: | (brak danych) | |
Prowadzący grup: | (brak danych) | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Ocena
Laboratorium - Ocena |
|
Skrócony opis: |
Classes are focused on teaching students advanced data mining and text mining techniques, including advanced methods of big data analysis. As a result of dynamic development of this interdisciplinary research a lot of effective algorithms were developed allowing automatically discovery of knowledge from databases, including unstructured data available in internet. This knowledge may be used in decision processes in business (including enterprises), science and technology. |
|
Pełny opis: |
The basic goal of these classes is to show students the theoretical and practical knowledge from advanced data mining techniques. During the classes theoretical basis of data mining techniques are presented as well as methods of verification of selected models. Also practical aspects of the applications of such methods in business are discussed. In laboratories students are able to realise the full process of data mining, starting with data preparation, variable selection, modelling, and ending with practical evaluation of results. In addition, unstructured data sets are analysed with text mining techniques. This subject is part of the Certificate: Data Scientist with SAS on master studies: Data Analysis - Big Data. |
|
Literatura: |
Literatura podstawowa: D.T.Larose, Discovering Knowledge in Data: An Introduction to Data Mining, Wiley, New York 2005; D.T.Larose, Data Mining Methods and Models, Wiley, New York 2006; J.Koronacki, J.Ćwik, Statystyczne systemy uczące się, WN-T, Warszawa 2005; I.Goodfellow, Y.Bengio, A.Courville, (2016). Deep learning (Vol. 1, p. 2). Cambridge: MIT press; I.H.Witten, H.Ian, Data Mining: Practical Machine Learning Tools and Techniques, Second Edition, Morgan Kaufmann, New York 2005; R.Matignon, Data Mining Using SAS Enterprise Miner, Wiley, Hoboken, NJ, 2007; R. Feldman, J. Sanger, The text mining handbook, Cambridge; M. W. Berry, J. Kogan, Text Mining: Applications and Theory, Wiley; S.M. Weiss, N. Indurkhya, T. Zhang, F. Damerau, Text Mining: Predictive Methods for Analyzing Unstructured Information, Springer; S. Haykin, Neural Networks and Learning Machines, Pearson, New Jersey 2009; F. Provost, T. Fawcett, Data Science for Business: What you need to know about data mining and data-analytic thinking, O?Reilly, USA, 2013; P. Flach, Machine Learning: The Art and Science of Algorithms that Make Sense of Data, Cambridge University Press, Cambridge, 2012; N. Japkowicz, M. Shah, Evaluating Learning Algorithms: A Classification Perspective, Cambridge University Press, New York, USA, 2011. Literatura uzupełniająca: K.J.Cios, W.Pedrycz, R.W.Swiniarski, L.A.Kurgan, Data Mining: A Knowledge Discovery Approach, Springer Science, Business Media, New York, 2007; Z.Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Norwell, MA, 1992. Lasek, M., & Pęczkowski, M. (2013). Enterprise Miner: wykorzystywanie narzędzi Data Mining w systemie SAS. Wydawnictwa Uniwersytetu Warszawskiego. |
|
Uwagi: |
Kryteria oceniania: egzamin testowy: 50.00% referaty/eseje: 50.00% |
Zajęcia w cyklu "Semestr zimowy 2023/24" (zakończony)
Okres: | 2023-10-01 - 2024-02-23 |
Przejdź do planu
PN WT ŚR CZ LAB
LAB
PT |
Typ zajęć: |
Laboratorium, 30 godzin
|
|
Koordynatorzy: | (brak danych) | |
Prowadzący grup: | Aneta Ptak-Chmielewska | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Ocena
Laboratorium - Ocena |
|
Skrócony opis: |
Classes are focused on teaching students advanced data mining and text mining techniques, including advanced methods of big data analysis. As a result of dynamic development of this interdisciplinary research a lot of effective algorithms were developed allowing automatically discovery of knowledge from databases, including unstructured data available in internet. This knowledge may be used in decision processes in business (including enterprises), science and technology. |
|
Pełny opis: |
The basic goal of these classes is to show students the theoretical and practical knowledge from advanced data mining techniques. During the classes theoretical basis of data mining techniques are presented as well as methods of verification of selected models. Also practical aspects of the applications of such methods in business are discussed. In laboratories students are able to realise the full process of data mining, starting with data preparation, variable selection, modelling, and ending with practical evaluation of results. In addition, unstructured data sets are analysed with text mining techniques. This subject is part of the Certificate: Data Scientist with SAS on master studies: Data Analysis - Big Data. |
|
Literatura: |
Literatura podstawowa: D.T.Larose, Discovering Knowledge in Data: An Introduction to Data Mining, Wiley, New York 2005; D.T.Larose, Data Mining Methods and Models, Wiley, New York 2006; J.Koronacki, J.Ćwik, Statystyczne systemy uczące się, WN-T, Warszawa 2005; I.Goodfellow, Y.Bengio, A.Courville, (2016). Deep learning (Vol. 1, p. 2). Cambridge: MIT press; I.H.Witten, H.Ian, Data Mining: Practical Machine Learning Tools and Techniques, Second Edition, Morgan Kaufmann, New York 2005; R.Matignon, Data Mining Using SAS Enterprise Miner, Wiley, Hoboken, NJ, 2007; R. Feldman, J. Sanger, The text mining handbook, Cambridge; M. W. Berry, J. Kogan, Text Mining: Applications and Theory, Wiley; S.M. Weiss, N. Indurkhya, T. Zhang, F. Damerau, Text Mining: Predictive Methods for Analyzing Unstructured Information, Springer; S. Haykin, Neural Networks and Learning Machines, Pearson, New Jersey 2009; F. Provost, T. Fawcett, Data Science for Business: What you need to know about data mining and data-analytic thinking, O?Reilly, USA, 2013; P. Flach, Machine Learning: The Art and Science of Algorithms that Make Sense of Data, Cambridge University Press, Cambridge, 2012; N. Japkowicz, M. Shah, Evaluating Learning Algorithms: A Classification Perspective, Cambridge University Press, New York, USA, 2011. Literatura uzupełniająca: K.J.Cios, W.Pedrycz, R.W.Swiniarski, L.A.Kurgan, Data Mining: A Knowledge Discovery Approach, Springer Science, Business Media, New York, 2007; Z.Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Norwell, MA, 1992. Lasek, M., & Pęczkowski, M. (2013). Enterprise Miner: wykorzystywanie narzędzi Data Mining w systemie SAS. Wydawnictwa Uniwersytetu Warszawskiego. |
|
Uwagi: |
Kryteria oceniania: egzamin testowy: 50.00% referaty/eseje: 50.00% |
Właścicielem praw autorskich jest Szkoła Główna Handlowa w Warszawie.