Basic and Advanced Programming in SAS with Statistics 223111-D
Laboratorium (LAB)
Semestr zimowy 2020/21
Informacje o zajęciach (wspólne dla wszystkich grup)
Liczba godzin: | 30 | ||
Limit miejsc: | (brak limitu) | ||
Zaliczenie: | Egzamin | ||
Zakres tematów: |
Data processing in SAS 4GL: Data- and Proc-steps, SAS statements and functions Sequence of SAS code running, variable attributes and PDV. Important procedures for data processing: Sorting and transposition of row data Data aggregations. Valuable processing techniques: Processing by groups Arrays of data Tables joining including SAS SQL. Tabular reports and basic of ODS: Data listing, tabular reports ODS: HTML, PDF, RTF and OUTPUT. Processing of text data: Text functions in SAS Data cleaning elements Regular expressions and Levenshtein distance Outlier detection. Data visualization: Bar, line and pie graphs ODS GRAPHICS and ODS MARKUP Vector graphics and LaTeX interchange. Macro-programming: SAS code parameterization by macro-variables Macro-loop and macro-if-then statements Array of macro-variables. Automatizing of data processing and reporting: Interactive reports SAS - Excel - interchange - DDE tool. Advance programming elements: Access to various data sources (ODBC, Oracle etc.) SQL Pass Through Facility Complicated text files and PIPE source SAS/IML and connection to R software Data processing optimization. Structure analyse: Descriptive statistics calculation Box and probability plots Goodness-of-Fit tests for distributions Distribution analyses. Statistical estimation: Confidence intervals for a mean Test for location for population mean T tests for one sample and two samples One-side t tests Random generators and approximately distributions in practice. Variable dependency: Correlation analyses and scatter plots Dependency for categorical variables Visualisation of dependency Regression analyse elements. Automatizing of statistical analyses: Box-cox transformation Partial correlation Outlier detection, robust means Multidimensional reduction, Principle Component Analyse. Advance usage of SAS/IML: Linear programming Non-linear optimization Genetic algorithms. User friendly graphical interface - simple code making in SAS: SAS Enterprise Guide Review of SAS tools useful for BIG DATA. Examples of analyses in R. |
Grupy zajęciowe
Grupa | Termin(y) | Prowadzący |
Miejsca ![]() |
Akcje |
---|---|---|---|---|
1 |
każdy piątek, 11:40 - 13:20,
sala 16 |
Karol Przanowski | 7/24 |
szczegóły![]() |
2 |
każdy piątek, 13:30 - 15:10,
sala 16 |
Karol Przanowski | 29/24 |
szczegóły![]() |
Wszystkie zajęcia odbywają się w budynku: Dom Studenta nr 1 Sabinki |
Właścicielem praw autorskich jest Szkoła Główna Handlowa w Warszawie.